bs.abravanelhall.net
Novi recepti

Naučnici objašnjavaju fiziku Guinnessovih mjehurića

Naučnici objašnjavaju fiziku Guinnessovih mjehurića


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.


Nakon godina studija, naučnici dokazuju zašto padaju krupni mjehurići

Nismo sigurni ponašaju li se Guinnessovi mjehurići drugačije pod vodom, ali barem na kopnu, dok se većina mjehurića iz piva diže do vrha čaše, Guinnessovi mjehurići padaju. Konačno, naučnici (naravno iz Irske) su shvatili zašto Guinnessovi mjehurići djeluju drugačije od ostalih kohorti piva.

Razlog: staklo. Oblik čaše određuje kako će se sipati Guinnessovo ili čvrsto pivo, oblikujući mjehuriće. Ranije je rekli su istraživači za BBC da se smatralo da "cirkulacijska struja" piva stvara mjehuriće. Ali kada su naučnici eksperimentisali sipajući krupno pivo u običnu čašu od pola litre, mehurići su se podigli umesto dole. Kada se Guinness sipa u čvrsto staklo - sa užim dnom - tok je "usmjeren prema zidu i prema gore", dok tekućina koja tone spušta mjehuriće prema dolje.

Osim toga, jaka piva sadrže dušik, umjesto ugljičnog dioksida, poput većine piva. Stvara mjehuriće različite veličine; mjehurići u lagerima su veći i nisu toliko skloni tom povlačenju, rekao je istraživač za BBC.

Možete se i sami uvjeriti kod kuće: istraživači su osmislili jednostavan eksperiment kod kuće. Sipajte sljedećeg Guinessa u cilindar pod nagibom i vidjet ćete kako će se mjehurići kretati prema gore i prema dolje.


Fizika džinovskih mjehurića razbija tajnu mehanike fluida

Studija inspirisana uličnim izvođačima koji prave ogromne mjehuriće sapuna dovela je do otkrića u mehanici fluida: Mješanje različitih molekularnih veličina polimera u otopini povećava sposobnost tankog filma da se rasteže bez lomljenja.

Dnevnik Physical Review Fluids objavio je rezultate istraživanja fizičara sa Univerziteta Emory. Nalazi bi potencijalno mogli dovesti do poboljšanja procesa kao što je protok ulja kroz industrijske cijevi i čišćenje zagađujuće pjene u potocima i rijekama.

Rezultati također imaju implikacije za ljubitelje puhanja mjehurića u dvorištu.

"Ova studija definitivno unosi zabavu u fundamentalne nauke", kaže Justin Burton, vanredni profesor fizike na Univerzitetu Emory i viši autor rada.

Dinamika fluida jedno je od središta Burtonove laboratorije. "Procesi dinamike fluida vizualno su lijepi i prisutni su posvuda na našoj planeti, od stvaranja i razbijanja kapljica i mjehurića do aerodinamike aviona i prevrtanja svjetskih okeana u dubokim vodama", kaže on.

Dok je Burton bio u Barceloni na konferenciji prije nekoliko godina, slučajno je vidio ulične izvođače kako prave ogromne mjehuriće koristeći otopinu sapuna i debelu pamučnu žicu. "Ovi mjehurići su bili otprilike promjera hulahopa i dugački koliko i automobil", prisjeća se on. "Takođe su bile lijepe, sa promjenom boje od crvenih do zelenih do plavkastih tonova na njihovoj površini."

Ovaj efekat duge pokazuje da je debljina filma uporediva sa talasnom dužinom svjetlosti ili samo nekoliko mikrona, objašnjava on.

Gledanje performansa izazvalo je Burtonovo mišljenje fizičko pitanje: Kako je tako mikroskopski tanak film mogao održati svoj integritet na tako velikoj udaljenosti, a da se ne raspadne? Počeo je s istraživanjem, kako u svom dvorištu, tako i u laboratoriji.

Dok je Burton istraživao recepte s mjehurićima, naišao je na Soap Bubble Wiki, mrežni projekt otvorenog koda. Wiki navodi da ima za cilj pomoći "mjehurićima" u stvaranju "savršenog mjehurića" odvajanjem činjenica od folklora u vezi s receptima i sastojcima za pravljenje mjehurića od sapuna.

Osim vode i tekućine za pranje posuđa, Wiki recepti Soap Bubble Wiki obično su uključivali i polimer - tvar sačinjenu od dugih lanaca molekula koje se ponavljaju. Najčešći polimeri u receptima bili su prirodni guar, prah koji se koristi kao dodatak u nekim namirnicama, ili industrijski polietilen glikol (PEO), mazivo koje se koristi u nekim lijekovima. Vodeći se wiki preporukama, Burton je proveo laboratorijske eksperimente zajedno sa dva studenta koautora koji su od tada diplomirali: Stephen Frazier, koji je magistrirao fiziku u maju i koji je prvi autor, te diplomirao Xinyi Jiang.

"U osnovi smo počeli stvarati mjehuriće i iskakati ih i zabilježili brzinu i dinamiku tog procesa", kaže Burton. "Fokusiranje na fluid u njegovim najnasilnijim trenucima može vam reći mnogo o njegovoj temeljnoj fizici."

Filmovi sapuna upijaju infracrveno svjetlo, pa su ih istraživači zasijali kroz mjehuriće kako bi izmjerili debljinu filmova. Također su mjerili molekularnu težinu različitih polimera koje su koristili u receptima s mjehurićima. I pustili su gravitaciju da povuče kapljice različitih sapunskih filmova sa mlaznice, kako bi izmjerili koliko bi se rezultirajući konac tekućine mogao protegnuti između mlaznice i kapljice prije pucanja.

Rezultati su otkrili da su polimeri ključni sastojak za stvaranje kolosalnih mjehurića. Duge, vlaknaste niti polimera omogućuju glatko tečenje mjehurića i rastezanje dalje bez pucanja.

"Polimerni pramenovi se zapletu, nešto poput dlačice, formirajući duže niti koje se ne žele raspasti", objašnjava Burton. "U pravoj kombinaciji, polimer dopušta sapunici da dođe do" slatke točke "koja je viskozna, ali i rastezljiva - samo ne toliko rastezljiva da se rascijepi."

Rad potvrđuje ono što su mnogi stručnjaci "mjehurići" već shvatili - dobar recept za ogromne mjehuriće sapuna trebao bi uključivati ​​polimer.

"Uradili smo fiziku da bismo objasnili zašto i kako polimeri mogu natjerati fluidni film da se protegne do 100 četvornih metara bez pucanja", kaže Burton.

Fizičari su također otkrili da mijenjanje molekularnih veličina polimera pomaže u jačanju filma sapuna. To otkriće dogodilo se slučajno.

Istraživači su radili na projektu više od godinu dana i skladištili neke kontejnere PEO -a koje su kupili. Shvatili su da PEO iz kontejnera koji su stari oko šest mjeseci stvaraju jače filmove od mjehurića sapuna u odnosu na PEO iz posuda korištenih pri prvoj kupnji. Nakon istraživanja, shvatili su da su se polimeri u ostarelom PEO vremenom razgradili, mijenjajući dužinu molekularnih niti.

"Polimeri različitih veličina postaju još zamršeniji od polimera jedne veličine, jačajući elastičnost filma", kaže Burton. "To je fundamentalno fizičko otkriće."

Razumijevanje kako tekućine i tanki filmovi reagiraju na stres, kaže Burton, moglo bi dovesti do niza primjena, poput poboljšanja protoka industrijskog materijala kroz cijevi ili čišćenja otrovnih pjena.

"Kao i kod svih fundamentalnih istraživanja, morate slijediti svoje instinkte i srce", kaže Burton o svojoj odiseji sa mjehurićima od sapunice. "Ponekad vam mjehurić pukne, ali u ovom slučaju otkrili smo nešto zanimljivo."

Recept za divovske mjehuriće

Burton preporučuje sljedeći recept za ispuhivanje ogromnih mjehurića sapuna. On upozorava, međutim, da faktori koji se ne mogu kontrolirati izvan laboratorija, poput nivoa vlažnosti, mogu promijeniti rezultate.

    1 litar vode (oko 2 litre)

50 mililitara profesionalnog deterdženta Dawn, dostupno na mreži (nešto više od 3 žlice)

2-3 grama guar praha, prodaje se u mnogim trgovinama (oko & frac12 žličice gomile)

50 mililitara alkohola (malo više od 3 kašike)

2 grama praška za pecivo (oko & frac12 žličice)

Pomešajte guar u prahu sa alkoholom i mešajte dok se ne stvore grudvice. Pomiješajte kašu od alkohola/guara s vodom i lagano miješajte 10 minuta. Ostavite da malo odstoji kako bi se guar hidratizirao. Zatim ponovo izmešajte. Dodajte prašak za pecivo i promiješajte. Dodajte deterdžent i lagano promiješajte kako biste izbjegli pjenu.

Umočite džinovski štapić s mjehurićima s vlaknastom žicom u smjesu dok potpuno ne uroni. Polako uklonite uzicu i nježno zamahnite štapićem ili nanesite sapunsku foliju. Uživajte u fizici ogromnih mjehurića sapuna!


Fizika džinovskih mjehurića razbija tajnu mehanike fluida

Studija inspirisana uličnim izvođačima koji prave ogromne mjehuriće sapuna dovela je do otkrića u mehanici fluida: Mješanje različitih molekularnih veličina polimera u otopini povećava sposobnost tankog filma da se rasteže bez lomljenja.

Dnevnik Physical Review Fluids objavio je rezultate istraživanja fizičara sa Univerziteta Emory. Nalazi bi potencijalno mogli dovesti do poboljšanja procesa kao što je protok ulja kroz industrijske cijevi i čišćenje zagađujuće pjene u potocima i rijekama.

Rezultati također imaju implikacije za ljubitelje puhanja mjehurića u dvorištu.

"Ova studija definitivno unosi zabavu u fundamentalne nauke", kaže Justin Burton, vanredni profesor fizike na Univerzitetu Emory i viši autor rada.

Dinamika fluida jedno je od središta Burtonove laboratorije. "Procesi dinamike fluida vizualno su lijepi i prisutni su posvuda na našoj planeti, od stvaranja i razbijanja kapljica i mjehurića do aerodinamike aviona i prevrtanja svjetskih okeana u dubokim vodama", kaže on.

Dok je Burton bio u Barceloni na konferenciji prije nekoliko godina, slučajno je vidio ulične izvođače kako prave velike mjehuriće koristeći otopinu sapuna i debelu pamučnu žicu. "Ovi mjehurići bili su promjera hulahopa i dugački koliko i automobil", prisjeća se on. "Takođe su bile lijepe, sa promjenom boje od crvenih do zelenih do plavkastih tonova na njihovoj površini."

Ovaj efekat duge pokazuje da je debljina filma uporediva sa talasnom dužinom svjetlosti ili samo nekoliko mikrona, objašnjava on.

Gledanje performansa izazvalo je Burtonovo mišljenje fizičko pitanje: Kako je tako mikroskopski tanak film mogao održati svoj integritet na tako velikoj udaljenosti, a da se ne raspadne? Počeo je s istraživanjem, kako u svom dvorištu, tako i u laboratoriji.

Dok je Burton istraživao recepte s mjehurićima, naišao je na Soap Bubble Wiki, internetski projekt otvorenog koda. Wiki navodi da ima za cilj pomoći "mjehurićima" u stvaranju "savršenog mjehurića" odvajanjem činjenica od folklora u vezi s receptima i sastojcima za pravljenje mjehurića od sapuna.

Osim vode i tekućine za pranje posuđa, Wiki recepti Soap Bubble Wiki obično su uključivali i polimer - tvar sačinjenu od dugih lanaca molekula koje se ponavljaju. Najčešći polimeri u receptima bili su prirodni guar, prah koji se koristi kao dodatak u nekim namirnicama, ili industrijski polietilen glikol (PEO), mazivo koje se koristi u nekim lijekovima. Vodeći se wiki preporukama, Burton je proveo laboratorijske eksperimente zajedno sa dva studenta koautora koji su od tada diplomirali: Stephen Frazier, koji je magistrirao fiziku u maju i koji je prvi autor, te diplomirao Xinyi Jiang.

"U osnovi smo počeli stvarati mjehuriće i iskakati ih i zabilježili brzinu i dinamiku tog procesa", kaže Burton. "Fokusiranje na fluid u njegovim najnasilnijim trenucima može vam reći mnogo o njegovoj temeljnoj fizici."

Filmovi sapuna upijaju infracrveno svjetlo, pa su ih istraživači zasijali kroz mjehuriće kako bi izmjerili debljinu filmova. Također su mjerili molekularnu težinu različitih polimera koje su koristili u receptima s mjehurićima. I pustili su gravitaciju da povuče kapljice različitih sapunskih filmova sa mlaznice, kako bi izmjerili koliko bi se rezultirajući konac tekućine mogao protegnuti između mlaznice i kapljice prije pucanja.

Rezultati su otkrili da su polimeri ključni sastojak za stvaranje kolosalnih mjehurića. Duge, vlaknaste niti polimera omogućuju glatko tečenje mjehurića i rastezanje dalje bez pucanja.

"Polimerni pramenovi se zapletu, nešto poput dlačice, formirajući duže niti koje se ne žele raspasti", objašnjava Burton. "U pravoj kombinaciji, polimer dopušta sapunici da dođe do" slatke točke "koja je viskozna, ali i rastezljiva - samo ne toliko rastezljiva da se rascijepi."

Rad potvrđuje ono što su mnogi stručnjaci "mjehurići" već shvatili - dobar recept za ogromne mjehuriće sapuna trebao bi uključivati ​​polimer.

"Uradili smo fiziku da bismo objasnili zašto i kako polimeri mogu natjerati fluidni film da se protegne do 100 četvornih metara bez pucanja", kaže Burton.

Fizičari su također otkrili da mijenjanje molekularnih veličina polimera pomaže u jačanju filma sapuna. To otkriće dogodilo se slučajno.

Istraživači su radili na projektu više od godinu dana i uskladištili neke kontejnere PEO -a koje su kupili. Shvatili su da PEO iz kontejnera koji su stari oko šest mjeseci stvaraju jače filmove od mjehurića sapuna u odnosu na PEO iz posuda koje su korištene pri prvoj kupnji. Nakon istraživanja, shvatili su da su se polimeri u ostarelom PEO vremenom razgradili, mijenjajući dužinu molekularnih niti.

"Polimeri različitih veličina postaju još zamršeniji od polimera jedne veličine, jačajući elastičnost filma", kaže Burton. "To je fundamentalno fizičko otkriće."

Razumijevanje kako tekućine i tanki filmovi reagiraju na stres, kaže Burton, moglo bi dovesti do niza primjena, poput poboljšanja protoka industrijskog materijala kroz cijevi ili čišćenja otrovnih pjena.

"Kao i kod svih fundamentalnih istraživanja, morate slijediti svoje instinkte i srce", kaže Burton o svojoj odiseji sa mjehurićima od sapunice. "Ponekad vam mjehurić pukne, ali u ovom slučaju otkrili smo nešto zanimljivo."

Recept za divovske mjehuriće

Burton preporučuje sljedeći recept za ispuhivanje ogromnih mjehurića sapuna. On upozorava, međutim, da faktori koji se ne mogu kontrolirati izvan laboratorija, poput nivoa vlažnosti, mogu promijeniti rezultate.

    1 litar vode (oko 2 litre)

50 mililitara profesionalnog deterdženta Dawn, dostupno na mreži (nešto više od 3 žlice)

2-3 grama guar praha, prodaje se u mnogim trgovinama (oko & frac12 žličice gomile)

50 mililitara alkohola (malo više od 3 kašike)

2 grama praška za pecivo (oko & frac12 žličice)

Pomešajte guar u prahu sa alkoholom i mešajte dok se ne stvore grudvice. Pomiješajte alkoholnu/gvarovu kašu s vodom i lagano miješajte 10 minuta. Ostavite da malo odstoji kako bi se guar hidratizirao. Zatim ponovo izmešajte. Dodajte prašak za pecivo i promiješajte. Dodajte deterdžent i lagano promiješajte kako biste izbjegli pjenu.

Umočite džinovski štapić s mjehurićima s vlaknastom žicom u smjesu dok potpuno ne uroni. Polako uklonite uzicu i nježno zamahnite štapićem ili nanesite sapunsku foliju. Uživajte u fizici ogromnih mjehurića sapuna!


Fizika džinovskih mjehurića razbija tajnu mehanike fluida

Studija inspirisana uličnim izvođačima koji prave ogromne mjehuriće sapuna dovela je do otkrića u mehanici fluida: Mješanje različitih molekularnih veličina polimera u otopini povećava sposobnost tankog filma da se rasteže bez lomljenja.

Dnevnik Physical Review Fluids objavio je rezultate istraživanja fizičara sa Univerziteta Emory. Nalazi bi potencijalno mogli dovesti do poboljšanja procesa kao što je protok ulja kroz industrijske cijevi i čišćenje zagađujuće pjene u potocima i rijekama.

Rezultati također imaju implikacije za ljubitelje puhanja mjehurića u dvorištu.

"Ova studija definitivno unosi zabavu u fundamentalne nauke", kaže Justin Burton, vanredni profesor fizike na Univerzitetu Emory i viši autor rada.

Dinamika fluida jedno je od središta Burtonove laboratorije. "Procesi dinamike fluida vizualno su lijepi i prisutni su posvuda na našoj planeti, od stvaranja i razbijanja kapljica i mjehurića do aerodinamike aviona i prevrtanja svjetskih okeana u dubokim vodama", kaže on.

Dok je Burton bio u Barceloni na konferenciji prije nekoliko godina, slučajno je vidio ulične izvođače kako prave ogromne mjehuriće koristeći otopinu sapuna i debelu pamučnu žicu. "Ovi mjehurići su bili otprilike promjera hulahopa i dugački koliko i automobil", prisjeća se on. "Takođe su bile lijepe, sa promjenom boje od crvenih do zelenih do plavkastih tonova na njihovoj površini."

Ovaj efekat duge pokazuje da je debljina filma uporediva sa talasnom dužinom svjetlosti ili samo nekoliko mikrona, objašnjava on.

Gledanje performansa izazvalo je Burtonovo mišljenje fizičko pitanje: Kako je tako mikroskopski tanak film mogao održati svoj integritet na tako velikoj udaljenosti, a da se ne raspadne? Počeo je s istraživanjem, kako u svom dvorištu, tako i u laboratoriji.

Dok je Burton istraživao recepte s mjehurićima, naišao je na Soap Bubble Wiki, mrežni projekt otvorenog koda. Wiki navodi da ima za cilj pomoći "mjehurićima" u stvaranju "savršenog mjehurića" odvajanjem činjenica od folklora u vezi s receptima i sastojcima za pravljenje mjehurića od sapuna.

Osim vode i tekućine za pranje posuđa, Wiki recepti Soap Bubble Wiki obično su uključivali i polimer - tvar sačinjenu od dugih lanaca molekula koje se ponavljaju. Najčešći polimeri u receptima bili su prirodni guar, prah koji se koristi kao dodatak u nekim namirnicama, ili industrijski polietilen glikol (PEO), mazivo koje se koristi u nekim lijekovima. Vodeći se wiki preporukama, Burton je proveo laboratorijske eksperimente zajedno sa dva studenta koautora koji su od tada diplomirali: Stephen Frazier, koji je magistrirao fiziku u maju i koji je prvi autor, te diplomirao Xinyi Jiang.

"U osnovi smo počeli stvarati mjehuriće i iskakati ih i zabilježili brzinu i dinamiku tog procesa", kaže Burton. "Fokusiranje na fluid u njegovim najnasilnijim trenucima može vam reći mnogo o njegovoj temeljnoj fizici."

Filmovi sapuna upijaju infracrveno svjetlo, pa su ih istraživači zasijali kroz mjehuriće kako bi izmjerili debljinu filmova. Također su mjerili molekularnu težinu različitih polimera koje su koristili u receptima s mjehurićima. I pustili su gravitaciju da povuče kapljice različitih sapunskih filmova sa mlaznice, kako bi izmjerili koliko bi se rezultirajući konac tekućine mogao protegnuti između mlaznice i kapljice prije pucanja.

Rezultati su otkrili da su polimeri ključni sastojak za stvaranje kolosalnih mjehurića. Duge, vlaknaste niti polimera omogućuju glatko tečenje mjehurića i rastezanje dalje bez pucanja.

"Polimerni pramenovi se zapletu, nešto poput dlake, formirajući duže niti koje se ne žele raspasti", objašnjava Burton. "U pravoj kombinaciji, polimer dopušta sapunici da dođe do" slatke točke "koja je viskozna, ali i rastezljiva - samo ne toliko rastezljiva da se rascijepi."

Rad potvrđuje ono što su mnogi stručnjaci "mjehurići" već shvatili - dobar recept za ogromne mjehuriće sapuna trebao bi uključivati ​​polimer.

"Uradili smo fiziku da bismo objasnili zašto i kako polimeri mogu natjerati fluidni film da se protegne do 100 četvornih metara bez pucanja", kaže Burton.

Fizičari su također otkrili da mijenjanje molekularnih veličina polimera pomaže u jačanju filma sapuna. To otkriće dogodilo se slučajno.

Istraživači su radili na projektu više od godinu dana i skladištili neke kontejnere PEO -a koje su kupili. Shvatili su da PEO iz kontejnera koji su stari oko šest mjeseci stvaraju jače filmove od mjehurića sapuna u odnosu na PEO iz posuda korištenih pri prvoj kupnji. Nakon istraživanja, shvatili su da su se polimeri u ostarelom PEO vremenom razgradili, mijenjajući dužinu molekularnih niti.

"Polimeri različitih veličina postaju još zamršeniji od polimera jedne veličine, jačajući elastičnost filma", kaže Burton. "To je fundamentalno fizičko otkriće."

Razumijevanje kako tekućine i tanki filmovi reagiraju na stres, kaže Burton, moglo bi dovesti do niza primjena, poput poboljšanja protoka industrijskog materijala kroz cijevi ili čišćenja otrovnih pjena.

"Kao i kod svih fundamentalnih istraživanja, morate slijediti svoje instinkte i srce", kaže Burton o svojoj odiseji sa mjehurićima od sapunice. "Ponekad vam mjehurić pukne, ali u ovom slučaju otkrili smo nešto zanimljivo."

Recept za divovske mjehuriće

Burton preporučuje sljedeći recept za ispuhivanje ogromnih mjehurića sapuna. On upozorava, međutim, da faktori koji se ne mogu kontrolirati izvan laboratorija, poput razine vlažnosti, mogu promijeniti rezultate.

    1 litar vode (oko 2 litre)

50 mililitara profesionalnog deterdženta Dawn, dostupno na mreži (nešto više od 3 žlice)

2-3 grama guar praha, prodaje se u mnogim trgovinama (oko & frac12 žličice gomile)

50 mililitara alkohola (malo više od 3 kašike)

2 grama praška za pecivo (oko & frac12 kašičice)

Pomešajte guar u prahu sa alkoholom i mešajte dok se ne stvore grudvice. Pomiješajte alkoholnu/gvarovu kašu s vodom i lagano miješajte 10 minuta. Ostavite da malo odstoji kako bi se guar hidratizirao. Zatim ponovo izmešajte. Dodajte prašak za pecivo i promiješajte. Dodajte deterdžent i lagano promiješajte kako biste izbjegli pjenu.

Umočite džinovski štapić s mjehurićima s vlaknastom žicom u smjesu dok potpuno ne uroni. Polako uklonite uzicu i nježno zamahnite štapićem ili nanesite sapunicu. Uživajte u fizici ogromnih mjehurića sapuna!


Fizika džinovskih mjehurića razbija tajnu mehanike fluida

Studija inspirisana uličnim izvođačima koji prave ogromne mjehuriće sapuna dovela je do otkrića u mehanici fluida: Mješanje različitih molekularnih veličina polimera u otopini povećava sposobnost tankog filma da se rasteže bez lomljenja.

Dnevnik Physical Review Fluids objavio je rezultate istraživanja fizičara sa Univerziteta Emory. Nalazi bi potencijalno mogli dovesti do poboljšanja procesa kao što je protok ulja kroz industrijske cijevi i čišćenje zagađujuće pjene u potocima i rijekama.

Rezultati također imaju implikacije za ljubitelje puhanja mjehurića u dvorištu.

"Ova studija definitivno unosi zabavu u fundamentalne nauke", kaže Justin Burton, vanredni profesor fizike na Univerzitetu Emory i viši autor rada.

Dinamika fluida jedno je od središta Burtonove laboratorije. "Procesi dinamike fluida vizualno su lijepi i prisutni su posvuda na našoj planeti, od stvaranja i razbijanja kapljica i mjehurića do aerodinamike aviona i prevrtanja svjetskih okeana u dubokim vodama", kaže on.

Dok je Burton bio u Barceloni na konferenciji prije nekoliko godina, slučajno je vidio ulične izvođače kako prave velike mjehuriće koristeći otopinu sapuna i debelu pamučnu žicu. "Ovi mjehurići su bili otprilike promjera hulahopa i dugački koliko i automobil", prisjeća se on. "Takođe su bile lijepe, sa promjenom boje od crvenih do zelenih do plavkastih tonova na njihovoj površini."

Ovaj efekat duge pokazuje da je debljina filma uporediva sa talasnom dužinom svjetlosti ili samo nekoliko mikrona, objašnjava on.

Gledanje performansa izazvalo je u Burtonovom umu fizičko pitanje: Kako je tako mikroskopski tanak film mogao održati svoj integritet na tako velikoj udaljenosti, a da se ne raspadne? Počeo je s istraživanjem, kako u svom dvorištu, tako i u laboratoriji.

Dok je Burton istraživao recepte s mjehurićima, naišao je na Soap Bubble Wiki, mrežni projekt otvorenog koda. Wiki navodi da ima za cilj pomoći "mjehurićima" u stvaranju "savršenog mjehurića" odvajanjem činjenica od folklora u vezi s receptima i sastojcima za pravljenje mjehurića od sapuna.

Osim vode i tekućine za pranje posuđa, Wiki recepti Soap Bubble Wiki obično su uključivali i polimer - tvar sačinjenu od dugih lanaca molekula koje se ponavljaju. Najčešći polimeri u receptima bili su prirodni guar, prah koji se koristi kao dodatak u nekim namirnicama, ili industrijski polietilen glikol (PEO), mazivo koje se koristi u nekim lijekovima. Vodeći se wiki preporukama, Burton je proveo laboratorijske eksperimente zajedno sa dva studenta koautora koji su od tada diplomirali: Stephen Frazier, koji je magistrirao fiziku u maju i koji je prvi autor, te diplomirao Xinyi Jiang.

"U osnovi smo počeli stvarati mjehuriće i iskakati ih i zabilježili brzinu i dinamiku tog procesa", kaže Burton. "Fokusiranje na fluid u njegovim najnasilnijim trenucima može vam reći mnogo o njegovoj temeljnoj fizici."

Filmovi sapuna apsorbiraju infracrveno svjetlo, pa su ih istraživači zasijali kroz mjehuriće kako bi izmjerili debljinu filmova. Također su mjerili molekularnu težinu različitih polimera koje su koristili u receptima s mjehurićima. I pustili su gravitaciju da povuče kapljice različitih sapunskih filmova sa mlaznice, kako bi izmjerili koliko bi se rezultirajući konac tekućine mogao protegnuti između mlaznice i kapljice prije pucanja.

Rezultati su otkrili da su polimeri ključni sastojak za stvaranje kolosalnih mjehurića. Duge, vlaknaste niti polimera omogućuju glatko tečenje mjehurića i rastezanje dalje bez pucanja.

"Polimerni pramenovi se zapletu, nešto poput dlačice, formirajući duže niti koje se ne žele raspasti", objašnjava Burton. "U pravoj kombinaciji, polimer dopušta sapunici da dođe do" slatke točke "koja je viskozna, ali i rastezljiva - samo ne toliko rastezljiva da se rascijepi."

Rad potvrđuje ono što su mnogi stručnjaci "mjehurići" već shvatili - dobar recept za ogromne mjehuriće sapuna trebao bi uključivati ​​polimer.

"Uradili smo fiziku da bismo objasnili zašto i kako polimeri mogu natjerati fluidni film da se protegne do 100 četvornih metara bez pucanja", kaže Burton.

Fizičari su također otkrili da mijenjanje molekularnih veličina polimera pomaže u jačanju filma sapuna. To otkriće dogodilo se slučajno.

Istraživači su radili na projektu više od godinu dana i uskladištili neke kontejnere PEO -a koje su kupili. Shvatili su da PEO iz kontejnera koji su stari oko šest mjeseci stvaraju jače filmove od mjehurića sapuna u odnosu na PEO iz posuda korištenih pri prvoj kupnji. Nakon istraživanja, shvatili su da su se polimeri u ostarelom PEO vremenom razgradili, mijenjajući dužinu molekularnih niti.

"Polimeri različitih veličina postaju još zamršeniji od polimera jedne veličine, jačajući elastičnost filma", kaže Burton. "To je fundamentalno fizičko otkriće."

Razumijevanje kako tekućine i tanki filmovi reagiraju na stres, kaže Burton, moglo bi dovesti do niza primjena, poput poboljšanja protoka industrijskog materijala kroz cijevi ili čišćenja otrovnih pjena.

"Kao i kod svih fundamentalnih istraživanja, morate slijediti svoje instinkte i srce", kaže Burton o svojoj odiseji sa mjehurićima od sapunice. "Ponekad vam mjehurić pukne, ali u ovom slučaju otkrili smo nešto zanimljivo."

Recept za divovske mjehuriće

Burton preporučuje sljedeći recept za ispuhivanje ogromnih mjehurića sapuna. On upozorava, međutim, da faktori koji se ne mogu kontrolirati izvan laboratorija, poput nivoa vlažnosti, mogu promijeniti rezultate.

    1 litar vode (oko 2 litre)

50 mililitara profesionalnog deterdženta Dawn, dostupno na mreži (nešto više od 3 žlice)

2-3 grama guar praha, prodaje se u mnogim trgovinama (oko & frac12 žličice gomile)

50 mililitara alkohola (malo više od 3 kašike)

2 grama praška za pecivo (oko & frac12 žličice)

Pomešajte guar u prahu sa alkoholom i mešajte dok se ne stvore grudvice. Pomiješajte alkoholnu/gvarovu kašu s vodom i lagano miješajte 10 minuta. Ostavite da malo odstoji kako bi se guar hidratizirao. Zatim ponovo izmešajte. Dodajte prašak za pecivo i promiješajte. Dodajte deterdžent i lagano promiješajte kako biste izbjegli pjenu.

Umočite džinovski štapić s mjehurićima s vlaknastom žicom u smjesu dok potpuno ne uroni. Polako uklonite uzicu i nježno zamahnite štapićem ili nanesite sapunsku foliju. Uživajte u fizici ogromnih mjehurića sapuna!


Fizika džinovskih mjehurića razbija tajnu mehanike fluida

Studija inspirisana uličnim izvođačima koji prave ogromne mjehuriće sapuna dovela je do otkrića u mehanici fluida: Mješanje različitih molekularnih veličina polimera u otopini povećava sposobnost tankog filma da se rasteže bez lomljenja.

Dnevnik Physical Review Fluids objavio je rezultate istraživanja fizičara sa Univerziteta Emory. Nalazi bi potencijalno mogli dovesti do poboljšanja procesa kao što je protok ulja kroz industrijske cijevi i čišćenje zagađujuće pjene u potocima i rijekama.

Rezultati također imaju implikacije za ljubitelje puhanja mjehurića u dvorištu.

"Ova studija definitivno unosi zabavu u fundamentalne nauke", kaže Justin Burton, vanredni profesor fizike na Univerzitetu Emory i viši autor rada.

Dinamika fluida jedno je od središta Burtonove laboratorije. "Procesi dinamike fluida vizualno su lijepi i prisutni su posvuda na našoj planeti, od stvaranja i razbijanja kapljica i mjehurića do aerodinamike aviona i prevrtanja svjetskih okeana u dubokim vodama", kaže on.

Dok je Burton bio u Barceloni na konferenciji prije nekoliko godina, slučajno je vidio ulične izvođače kako prave velike mjehuriće koristeći otopinu sapuna i debelu pamučnu žicu. "Ovi mjehurići su bili otprilike promjera hulahopa i dugački koliko i automobil", prisjeća se on. "Takođe su bile lijepe, sa promjenom boje od crvenih do zelenih do plavkastih tonova na njihovoj površini."

Ovaj efekat duge pokazuje da je debljina filma uporediva sa talasnom dužinom svjetlosti ili samo nekoliko mikrona, objašnjava on.

Gledanje performansa izazvalo je Burtonovo mišljenje fizičko pitanje: Kako je tako mikroskopski tanak film mogao održati svoj integritet na tako velikoj udaljenosti, a da se ne raspadne? Počeo je s istraživanjem, kako u svom dvorištu, tako i u laboratoriji.

Dok je Burton istraživao recepte s mjehurićima, naišao je na Soap Bubble Wiki, mrežni projekt otvorenog koda. Wiki navodi da ima za cilj pomoći "mjehurićima" u stvaranju "savršenog mjehurića" odvajanjem činjenica od folklora u vezi s receptima i sastojcima za pravljenje mjehurića od sapuna.

Osim vode i tekućine za pranje posuđa, Wiki recepti za Sapun Bubble Wiki obično su uključivali i polimer - tvar sačinjenu od dugih lanaca molekula koje se ponavljaju. Najčešći polimeri u receptima bili su prirodni guar, prah koji se koristi kao dodatak u nekim namirnicama, ili industrijski polietilen glikol (PEO), mazivo koje se koristi u nekim lijekovima. Vodeći se wiki preporukama, Burton je proveo laboratorijske eksperimente zajedno sa dva studenta koautora koji su od tada diplomirali: Stephen Frazier, koji je magistrirao fiziku u maju i koji je prvi autor, te diplomirao Xinyi Jiang.

"U osnovi smo počeli stvarati mjehuriće i iskakati ih i zabilježili brzinu i dinamiku tog procesa", kaže Burton. "Fokusiranje na fluid u njegovim najnasilnijim trenucima može vam reći mnogo o njegovoj temeljnoj fizici."

Filmovi sapuna upijaju infracrveno svjetlo, pa su ih istraživači zasijali kroz mjehuriće kako bi izmjerili debljinu filmova. Također su mjerili molekularnu težinu različitih polimera koje su koristili u receptima s mjehurićima. I pustili su gravitaciju da povuče kapljice različitih sapunskih filmova sa mlaznice, kako bi izmjerili koliko bi se rezultirajući konac tekućine mogao protegnuti između mlaznice i kapljice prije pucanja.

Rezultati su otkrili da su polimeri ključni sastojak za stvaranje kolosalnih mjehurića. Duge, vlaknaste niti polimera omogućuju glatko tečenje mjehurića i rastezanje dalje bez pucanja.

"Polimerni pramenovi se zapletu, nešto poput dlačice, formirajući duže niti koje se ne žele raspasti", objašnjava Burton. "U pravoj kombinaciji, polimer dopušta sapunici da dođe do" slatke točke "koja je viskozna, ali i rastezljiva - samo ne toliko rastezljiva da se rascijepi."

Rad potvrđuje ono što su mnogi stručnjaci "mjehurići" već shvatili - dobar recept za ogromne mjehuriće sapuna trebao bi uključivati ​​polimer.

"Uradili smo fiziku da bismo objasnili zašto i kako polimeri mogu natjerati fluidni film da se protegne do 100 četvornih metara bez pucanja", kaže Burton.

The physicists also found that varying the molecular sizes of the polymers helps strengthen soap film. That discovery happened by accident.

The researchers worked on the project for more than a year and stored some containers of PEO they had purchased. They realized that PEO from containers that had aged about six months produced stronger soap bubble films compared to PEO from containers used when it was first purchased. Upon investigation, they realized that the polymers in the aged PEO had degraded over time, varying the length of the molecular strands.

"Polymers of different sizes become even more entangled than single-sized polymers, strengthening the elasticity of the film," Burton says. "That's a fundamental physics discovery."

Understanding how fluids and thin films response to stress, Burton says, could lead to an array of applications, such as improving the flow of industrial materials through pipes, or the clean-up of toxic foams.

"As with all fundamental research, you have to follow your instincts and heart," Burton says of his soap bubble odyssey. "Sometimes your bubble gets burst, but in this case, we discovered something interesting."

Giant Bubble Recipe

Burton recommends the following recipe for blowing giant soap bubbles. He cautions, however, that factors that cannot be controlled outside of a laboratory, such as humidity levels, may alter the results.

    1 liter of water (about 2 pints)

50 milliliters of Dawn Professional Detergent, available online (a little over 3 tablespoons)

2-3 grams of guar powder, sold in many grocery stores (about ½ heaping teaspoon)

50 milliliters of rubbing alcohol (a little over 3 tablespoons)

2 grams of baking powder (about ½ teaspoon)

Mix the guar powder with the alcohol and stir until there are no clumps. Combine the alcohol/guar slurry with the water and mix gently for 10 minutes. Let it sit for a bit so the guar hydrates. Then mix again. Add the baking powder and stir. Add the detergent, and stir gently to avoid foaming.

Dip a giant bubble wand with a fibrous string into the mixture until it is fully immersed. Slowly remove the string and wave the wand gently or blow on the soap film. Enjoy the physics of giant soap bubbles!


Physics of giant bubbles bursts secret of fluid mechanics

A study inspired by street performers making gigantic soap bubbles led to a discovery in fluid mechanics: Mixing different molecular sizes of polymers within a solution increases the ability of a thin film to stretch without breaking.

The journal Physical Review Fluids published the results of the study by physicists at Emory University. The findings could potentially lead to improving processes such as the flow of oils through industrial pipes and the clearance of polluting foams in streams and rivers.

The results also hold implications for backyard bubble-blowing enthusiasts.

"This study definitely puts the fun into fundamental science," says Justin Burton, associate professor of physics at Emory University and senior author of the paper.

Fluid dynamics is one of the focuses of Burton's lab. "The processes of fluid dynamics are visually beautiful and they are everywhere on our planet, from the formation and breakup of droplets and bubbles to the aerodynamics of airplanes and the deep-sea overturning of the world's oceans," he says.

While Burton was in Barcelona for a conference a few years ago, he happened to see street performers making huge bubbles using a soap solution and thick cotton string. "These bubbles were about the diameter of a hula hoop and as much as a car-length long," he recalls. "They were also beautiful, with color changes from red to green to bluish tones on their surface."

This rainbow effect shows that a film's thickness is comparable to the wavelength of light, or just a few microns, he explains.

Viewing the performance sparked a physics question in Burton's mind: How could such a microscopically thin film maintain its integrity over such a large distance without breaking up? He began investigating, both in his backyard and in his lab.

As Burton researched bubble recipes he came across the Soap Bubble Wiki, an online, open-source project. The wiki states that it aims to help "bubblers" create "the perfect bubble" by separating fact from folklore regarding soap bubble-making recipes and ingredients.

In addition to water and dishwashing liquid, the Soap Bubble Wiki recipes usually included a polymer -- a substance made up of long chains of repeating molecules. The most common polymers in the recipes were natural guar, a powder used as an additive in some foods, or industrial polyethylene glycol (PEO), a lubricant used in some medicines. Guided by the wiki recommendations, Burton conducted laboratory experiments along with two student co-authors who have since graduated: Stephen Frazier, who received a master's in physics in May and is first author, and undergraduate Xinyi Jiang.

"We basically started making bubbles and popping them, and recorded the speed and dynamics of that process," Burton says. "Focusing on a fluid at its most violent moments can tell you a lot about its underlying physics."

Soap films absorb infrared light, so the researchers shone it through the bubbles to measure the thickness of the films. They also measured the molecular weights of the different polymers they used in the bubble recipes. And they let gravity pull droplets of the various soap films off a nozzle, in order to measure how long the resulting thread of liquid could stretch between the nozzle and the droplet before breaking.

The results revealed that polymers were the key ingredient to making colossal bubbles. The long, fibrous strands of polymers enable the bubbles to flow smoothly and stretch further without popping.

"The polymer strands become entangled, something like a hairball, forming longer strands that don't want to break apart," Burton explains. "In the right combination, a polymer allows a soap film to reach a 'sweet spot' that's viscous but also stretchy -- just not so stretchy that it rips apart."

The work confirms what many expert "bubblers" already had figured out -- a good giant soap bubble recipe should include a polymer.

"We did the physics to explain why and how polymers can make a fluid film stretch as far as 100 square meters without breaking," Burton says.

The physicists also found that varying the molecular sizes of the polymers helps strengthen soap film. That discovery happened by accident.

The researchers worked on the project for more than a year and stored some containers of PEO they had purchased. They realized that PEO from containers that had aged about six months produced stronger soap bubble films compared to PEO from containers used when it was first purchased. Upon investigation, they realized that the polymers in the aged PEO had degraded over time, varying the length of the molecular strands.

"Polymers of different sizes become even more entangled than single-sized polymers, strengthening the elasticity of the film," Burton says. "That's a fundamental physics discovery."

Understanding how fluids and thin films response to stress, Burton says, could lead to an array of applications, such as improving the flow of industrial materials through pipes, or the clean-up of toxic foams.

"As with all fundamental research, you have to follow your instincts and heart," Burton says of his soap bubble odyssey. "Sometimes your bubble gets burst, but in this case, we discovered something interesting."

Giant Bubble Recipe

Burton recommends the following recipe for blowing giant soap bubbles. He cautions, however, that factors that cannot be controlled outside of a laboratory, such as humidity levels, may alter the results.

    1 liter of water (about 2 pints)

50 milliliters of Dawn Professional Detergent, available online (a little over 3 tablespoons)

2-3 grams of guar powder, sold in many grocery stores (about ½ heaping teaspoon)

50 milliliters of rubbing alcohol (a little over 3 tablespoons)

2 grams of baking powder (about ½ teaspoon)

Mix the guar powder with the alcohol and stir until there are no clumps. Combine the alcohol/guar slurry with the water and mix gently for 10 minutes. Let it sit for a bit so the guar hydrates. Then mix again. Add the baking powder and stir. Add the detergent, and stir gently to avoid foaming.

Dip a giant bubble wand with a fibrous string into the mixture until it is fully immersed. Slowly remove the string and wave the wand gently or blow on the soap film. Enjoy the physics of giant soap bubbles!


Physics of giant bubbles bursts secret of fluid mechanics

A study inspired by street performers making gigantic soap bubbles led to a discovery in fluid mechanics: Mixing different molecular sizes of polymers within a solution increases the ability of a thin film to stretch without breaking.

The journal Physical Review Fluids published the results of the study by physicists at Emory University. The findings could potentially lead to improving processes such as the flow of oils through industrial pipes and the clearance of polluting foams in streams and rivers.

The results also hold implications for backyard bubble-blowing enthusiasts.

"This study definitely puts the fun into fundamental science," says Justin Burton, associate professor of physics at Emory University and senior author of the paper.

Fluid dynamics is one of the focuses of Burton's lab. "The processes of fluid dynamics are visually beautiful and they are everywhere on our planet, from the formation and breakup of droplets and bubbles to the aerodynamics of airplanes and the deep-sea overturning of the world's oceans," he says.

While Burton was in Barcelona for a conference a few years ago, he happened to see street performers making huge bubbles using a soap solution and thick cotton string. "These bubbles were about the diameter of a hula hoop and as much as a car-length long," he recalls. "They were also beautiful, with color changes from red to green to bluish tones on their surface."

This rainbow effect shows that a film's thickness is comparable to the wavelength of light, or just a few microns, he explains.

Viewing the performance sparked a physics question in Burton's mind: How could such a microscopically thin film maintain its integrity over such a large distance without breaking up? He began investigating, both in his backyard and in his lab.

As Burton researched bubble recipes he came across the Soap Bubble Wiki, an online, open-source project. The wiki states that it aims to help "bubblers" create "the perfect bubble" by separating fact from folklore regarding soap bubble-making recipes and ingredients.

In addition to water and dishwashing liquid, the Soap Bubble Wiki recipes usually included a polymer -- a substance made up of long chains of repeating molecules. The most common polymers in the recipes were natural guar, a powder used as an additive in some foods, or industrial polyethylene glycol (PEO), a lubricant used in some medicines. Guided by the wiki recommendations, Burton conducted laboratory experiments along with two student co-authors who have since graduated: Stephen Frazier, who received a master's in physics in May and is first author, and undergraduate Xinyi Jiang.

"We basically started making bubbles and popping them, and recorded the speed and dynamics of that process," Burton says. "Focusing on a fluid at its most violent moments can tell you a lot about its underlying physics."

Soap films absorb infrared light, so the researchers shone it through the bubbles to measure the thickness of the films. They also measured the molecular weights of the different polymers they used in the bubble recipes. And they let gravity pull droplets of the various soap films off a nozzle, in order to measure how long the resulting thread of liquid could stretch between the nozzle and the droplet before breaking.

The results revealed that polymers were the key ingredient to making colossal bubbles. The long, fibrous strands of polymers enable the bubbles to flow smoothly and stretch further without popping.

"The polymer strands become entangled, something like a hairball, forming longer strands that don't want to break apart," Burton explains. "In the right combination, a polymer allows a soap film to reach a 'sweet spot' that's viscous but also stretchy -- just not so stretchy that it rips apart."

The work confirms what many expert "bubblers" already had figured out -- a good giant soap bubble recipe should include a polymer.

"We did the physics to explain why and how polymers can make a fluid film stretch as far as 100 square meters without breaking," Burton says.

The physicists also found that varying the molecular sizes of the polymers helps strengthen soap film. That discovery happened by accident.

The researchers worked on the project for more than a year and stored some containers of PEO they had purchased. They realized that PEO from containers that had aged about six months produced stronger soap bubble films compared to PEO from containers used when it was first purchased. Upon investigation, they realized that the polymers in the aged PEO had degraded over time, varying the length of the molecular strands.

"Polymers of different sizes become even more entangled than single-sized polymers, strengthening the elasticity of the film," Burton says. "That's a fundamental physics discovery."

Understanding how fluids and thin films response to stress, Burton says, could lead to an array of applications, such as improving the flow of industrial materials through pipes, or the clean-up of toxic foams.

"As with all fundamental research, you have to follow your instincts and heart," Burton says of his soap bubble odyssey. "Sometimes your bubble gets burst, but in this case, we discovered something interesting."

Giant Bubble Recipe

Burton recommends the following recipe for blowing giant soap bubbles. He cautions, however, that factors that cannot be controlled outside of a laboratory, such as humidity levels, may alter the results.

    1 liter of water (about 2 pints)

50 milliliters of Dawn Professional Detergent, available online (a little over 3 tablespoons)

2-3 grams of guar powder, sold in many grocery stores (about ½ heaping teaspoon)

50 milliliters of rubbing alcohol (a little over 3 tablespoons)

2 grams of baking powder (about ½ teaspoon)

Mix the guar powder with the alcohol and stir until there are no clumps. Combine the alcohol/guar slurry with the water and mix gently for 10 minutes. Let it sit for a bit so the guar hydrates. Then mix again. Add the baking powder and stir. Add the detergent, and stir gently to avoid foaming.

Dip a giant bubble wand with a fibrous string into the mixture until it is fully immersed. Slowly remove the string and wave the wand gently or blow on the soap film. Enjoy the physics of giant soap bubbles!


Physics of giant bubbles bursts secret of fluid mechanics

A study inspired by street performers making gigantic soap bubbles led to a discovery in fluid mechanics: Mixing different molecular sizes of polymers within a solution increases the ability of a thin film to stretch without breaking.

The journal Physical Review Fluids published the results of the study by physicists at Emory University. The findings could potentially lead to improving processes such as the flow of oils through industrial pipes and the clearance of polluting foams in streams and rivers.

The results also hold implications for backyard bubble-blowing enthusiasts.

"This study definitely puts the fun into fundamental science," says Justin Burton, associate professor of physics at Emory University and senior author of the paper.

Fluid dynamics is one of the focuses of Burton's lab. "The processes of fluid dynamics are visually beautiful and they are everywhere on our planet, from the formation and breakup of droplets and bubbles to the aerodynamics of airplanes and the deep-sea overturning of the world's oceans," he says.

While Burton was in Barcelona for a conference a few years ago, he happened to see street performers making huge bubbles using a soap solution and thick cotton string. "These bubbles were about the diameter of a hula hoop and as much as a car-length long," he recalls. "They were also beautiful, with color changes from red to green to bluish tones on their surface."

This rainbow effect shows that a film's thickness is comparable to the wavelength of light, or just a few microns, he explains.

Viewing the performance sparked a physics question in Burton's mind: How could such a microscopically thin film maintain its integrity over such a large distance without breaking up? He began investigating, both in his backyard and in his lab.

As Burton researched bubble recipes he came across the Soap Bubble Wiki, an online, open-source project. The wiki states that it aims to help "bubblers" create "the perfect bubble" by separating fact from folklore regarding soap bubble-making recipes and ingredients.

In addition to water and dishwashing liquid, the Soap Bubble Wiki recipes usually included a polymer -- a substance made up of long chains of repeating molecules. The most common polymers in the recipes were natural guar, a powder used as an additive in some foods, or industrial polyethylene glycol (PEO), a lubricant used in some medicines. Guided by the wiki recommendations, Burton conducted laboratory experiments along with two student co-authors who have since graduated: Stephen Frazier, who received a master's in physics in May and is first author, and undergraduate Xinyi Jiang.

"We basically started making bubbles and popping them, and recorded the speed and dynamics of that process," Burton says. "Focusing on a fluid at its most violent moments can tell you a lot about its underlying physics."

Soap films absorb infrared light, so the researchers shone it through the bubbles to measure the thickness of the films. They also measured the molecular weights of the different polymers they used in the bubble recipes. And they let gravity pull droplets of the various soap films off a nozzle, in order to measure how long the resulting thread of liquid could stretch between the nozzle and the droplet before breaking.

The results revealed that polymers were the key ingredient to making colossal bubbles. The long, fibrous strands of polymers enable the bubbles to flow smoothly and stretch further without popping.

"The polymer strands become entangled, something like a hairball, forming longer strands that don't want to break apart," Burton explains. "In the right combination, a polymer allows a soap film to reach a 'sweet spot' that's viscous but also stretchy -- just not so stretchy that it rips apart."

The work confirms what many expert "bubblers" already had figured out -- a good giant soap bubble recipe should include a polymer.

"We did the physics to explain why and how polymers can make a fluid film stretch as far as 100 square meters without breaking," Burton says.

The physicists also found that varying the molecular sizes of the polymers helps strengthen soap film. That discovery happened by accident.

The researchers worked on the project for more than a year and stored some containers of PEO they had purchased. They realized that PEO from containers that had aged about six months produced stronger soap bubble films compared to PEO from containers used when it was first purchased. Upon investigation, they realized that the polymers in the aged PEO had degraded over time, varying the length of the molecular strands.

"Polymers of different sizes become even more entangled than single-sized polymers, strengthening the elasticity of the film," Burton says. "That's a fundamental physics discovery."

Understanding how fluids and thin films response to stress, Burton says, could lead to an array of applications, such as improving the flow of industrial materials through pipes, or the clean-up of toxic foams.

"As with all fundamental research, you have to follow your instincts and heart," Burton says of his soap bubble odyssey. "Sometimes your bubble gets burst, but in this case, we discovered something interesting."

Giant Bubble Recipe

Burton recommends the following recipe for blowing giant soap bubbles. He cautions, however, that factors that cannot be controlled outside of a laboratory, such as humidity levels, may alter the results.

    1 liter of water (about 2 pints)

50 milliliters of Dawn Professional Detergent, available online (a little over 3 tablespoons)

2-3 grams of guar powder, sold in many grocery stores (about ½ heaping teaspoon)

50 milliliters of rubbing alcohol (a little over 3 tablespoons)

2 grams of baking powder (about ½ teaspoon)

Mix the guar powder with the alcohol and stir until there are no clumps. Combine the alcohol/guar slurry with the water and mix gently for 10 minutes. Let it sit for a bit so the guar hydrates. Then mix again. Add the baking powder and stir. Add the detergent, and stir gently to avoid foaming.

Dip a giant bubble wand with a fibrous string into the mixture until it is fully immersed. Slowly remove the string and wave the wand gently or blow on the soap film. Enjoy the physics of giant soap bubbles!


Physics of giant bubbles bursts secret of fluid mechanics

A study inspired by street performers making gigantic soap bubbles led to a discovery in fluid mechanics: Mixing different molecular sizes of polymers within a solution increases the ability of a thin film to stretch without breaking.

The journal Physical Review Fluids published the results of the study by physicists at Emory University. The findings could potentially lead to improving processes such as the flow of oils through industrial pipes and the clearance of polluting foams in streams and rivers.

The results also hold implications for backyard bubble-blowing enthusiasts.

"This study definitely puts the fun into fundamental science," says Justin Burton, associate professor of physics at Emory University and senior author of the paper.

Fluid dynamics is one of the focuses of Burton's lab. "The processes of fluid dynamics are visually beautiful and they are everywhere on our planet, from the formation and breakup of droplets and bubbles to the aerodynamics of airplanes and the deep-sea overturning of the world's oceans," he says.

While Burton was in Barcelona for a conference a few years ago, he happened to see street performers making huge bubbles using a soap solution and thick cotton string. "These bubbles were about the diameter of a hula hoop and as much as a car-length long," he recalls. "They were also beautiful, with color changes from red to green to bluish tones on their surface."

This rainbow effect shows that a film's thickness is comparable to the wavelength of light, or just a few microns, he explains.

Viewing the performance sparked a physics question in Burton's mind: How could such a microscopically thin film maintain its integrity over such a large distance without breaking up? He began investigating, both in his backyard and in his lab.

As Burton researched bubble recipes he came across the Soap Bubble Wiki, an online, open-source project. The wiki states that it aims to help "bubblers" create "the perfect bubble" by separating fact from folklore regarding soap bubble-making recipes and ingredients.

In addition to water and dishwashing liquid, the Soap Bubble Wiki recipes usually included a polymer -- a substance made up of long chains of repeating molecules. The most common polymers in the recipes were natural guar, a powder used as an additive in some foods, or industrial polyethylene glycol (PEO), a lubricant used in some medicines. Guided by the wiki recommendations, Burton conducted laboratory experiments along with two student co-authors who have since graduated: Stephen Frazier, who received a master's in physics in May and is first author, and undergraduate Xinyi Jiang.

"We basically started making bubbles and popping them, and recorded the speed and dynamics of that process," Burton says. "Focusing on a fluid at its most violent moments can tell you a lot about its underlying physics."

Soap films absorb infrared light, so the researchers shone it through the bubbles to measure the thickness of the films. They also measured the molecular weights of the different polymers they used in the bubble recipes. And they let gravity pull droplets of the various soap films off a nozzle, in order to measure how long the resulting thread of liquid could stretch between the nozzle and the droplet before breaking.

The results revealed that polymers were the key ingredient to making colossal bubbles. The long, fibrous strands of polymers enable the bubbles to flow smoothly and stretch further without popping.

"The polymer strands become entangled, something like a hairball, forming longer strands that don't want to break apart," Burton explains. "In the right combination, a polymer allows a soap film to reach a 'sweet spot' that's viscous but also stretchy -- just not so stretchy that it rips apart."

The work confirms what many expert "bubblers" already had figured out -- a good giant soap bubble recipe should include a polymer.

"We did the physics to explain why and how polymers can make a fluid film stretch as far as 100 square meters without breaking," Burton says.

The physicists also found that varying the molecular sizes of the polymers helps strengthen soap film. That discovery happened by accident.

The researchers worked on the project for more than a year and stored some containers of PEO they had purchased. They realized that PEO from containers that had aged about six months produced stronger soap bubble films compared to PEO from containers used when it was first purchased. Upon investigation, they realized that the polymers in the aged PEO had degraded over time, varying the length of the molecular strands.

"Polymers of different sizes become even more entangled than single-sized polymers, strengthening the elasticity of the film," Burton says. "That's a fundamental physics discovery."

Understanding how fluids and thin films response to stress, Burton says, could lead to an array of applications, such as improving the flow of industrial materials through pipes, or the clean-up of toxic foams.

"As with all fundamental research, you have to follow your instincts and heart," Burton says of his soap bubble odyssey. "Sometimes your bubble gets burst, but in this case, we discovered something interesting."

Giant Bubble Recipe

Burton recommends the following recipe for blowing giant soap bubbles. He cautions, however, that factors that cannot be controlled outside of a laboratory, such as humidity levels, may alter the results.

    1 liter of water (about 2 pints)

50 milliliters of Dawn Professional Detergent, available online (a little over 3 tablespoons)

2-3 grams of guar powder, sold in many grocery stores (about ½ heaping teaspoon)

50 milliliters of rubbing alcohol (a little over 3 tablespoons)

2 grams of baking powder (about ½ teaspoon)

Mix the guar powder with the alcohol and stir until there are no clumps. Combine the alcohol/guar slurry with the water and mix gently for 10 minutes. Let it sit for a bit so the guar hydrates. Then mix again. Add the baking powder and stir. Add the detergent, and stir gently to avoid foaming.

Dip a giant bubble wand with a fibrous string into the mixture until it is fully immersed. Slowly remove the string and wave the wand gently or blow on the soap film. Enjoy the physics of giant soap bubbles!


Physics of giant bubbles bursts secret of fluid mechanics

A study inspired by street performers making gigantic soap bubbles led to a discovery in fluid mechanics: Mixing different molecular sizes of polymers within a solution increases the ability of a thin film to stretch without breaking.

The journal Physical Review Fluids published the results of the study by physicists at Emory University. The findings could potentially lead to improving processes such as the flow of oils through industrial pipes and the clearance of polluting foams in streams and rivers.

The results also hold implications for backyard bubble-blowing enthusiasts.

"This study definitely puts the fun into fundamental science," says Justin Burton, associate professor of physics at Emory University and senior author of the paper.

Fluid dynamics is one of the focuses of Burton's lab. "The processes of fluid dynamics are visually beautiful and they are everywhere on our planet, from the formation and breakup of droplets and bubbles to the aerodynamics of airplanes and the deep-sea overturning of the world's oceans," he says.

While Burton was in Barcelona for a conference a few years ago, he happened to see street performers making huge bubbles using a soap solution and thick cotton string. "These bubbles were about the diameter of a hula hoop and as much as a car-length long," he recalls. "They were also beautiful, with color changes from red to green to bluish tones on their surface."

This rainbow effect shows that a film's thickness is comparable to the wavelength of light, or just a few microns, he explains.

Viewing the performance sparked a physics question in Burton's mind: How could such a microscopically thin film maintain its integrity over such a large distance without breaking up? He began investigating, both in his backyard and in his lab.

As Burton researched bubble recipes he came across the Soap Bubble Wiki, an online, open-source project. The wiki states that it aims to help "bubblers" create "the perfect bubble" by separating fact from folklore regarding soap bubble-making recipes and ingredients.

In addition to water and dishwashing liquid, the Soap Bubble Wiki recipes usually included a polymer -- a substance made up of long chains of repeating molecules. The most common polymers in the recipes were natural guar, a powder used as an additive in some foods, or industrial polyethylene glycol (PEO), a lubricant used in some medicines. Guided by the wiki recommendations, Burton conducted laboratory experiments along with two student co-authors who have since graduated: Stephen Frazier, who received a master's in physics in May and is first author, and undergraduate Xinyi Jiang.

"We basically started making bubbles and popping them, and recorded the speed and dynamics of that process," Burton says. "Focusing on a fluid at its most violent moments can tell you a lot about its underlying physics."

Soap films absorb infrared light, so the researchers shone it through the bubbles to measure the thickness of the films. They also measured the molecular weights of the different polymers they used in the bubble recipes. And they let gravity pull droplets of the various soap films off a nozzle, in order to measure how long the resulting thread of liquid could stretch between the nozzle and the droplet before breaking.

The results revealed that polymers were the key ingredient to making colossal bubbles. The long, fibrous strands of polymers enable the bubbles to flow smoothly and stretch further without popping.

"The polymer strands become entangled, something like a hairball, forming longer strands that don't want to break apart," Burton explains. "In the right combination, a polymer allows a soap film to reach a 'sweet spot' that's viscous but also stretchy -- just not so stretchy that it rips apart."

The work confirms what many expert "bubblers" already had figured out -- a good giant soap bubble recipe should include a polymer.

"We did the physics to explain why and how polymers can make a fluid film stretch as far as 100 square meters without breaking," Burton says.

The physicists also found that varying the molecular sizes of the polymers helps strengthen soap film. That discovery happened by accident.

The researchers worked on the project for more than a year and stored some containers of PEO they had purchased. They realized that PEO from containers that had aged about six months produced stronger soap bubble films compared to PEO from containers used when it was first purchased. Upon investigation, they realized that the polymers in the aged PEO had degraded over time, varying the length of the molecular strands.

"Polymers of different sizes become even more entangled than single-sized polymers, strengthening the elasticity of the film," Burton says. "That's a fundamental physics discovery."

Understanding how fluids and thin films response to stress, Burton says, could lead to an array of applications, such as improving the flow of industrial materials through pipes, or the clean-up of toxic foams.

"As with all fundamental research, you have to follow your instincts and heart," Burton says of his soap bubble odyssey. "Sometimes your bubble gets burst, but in this case, we discovered something interesting."

Giant Bubble Recipe

Burton recommends the following recipe for blowing giant soap bubbles. He cautions, however, that factors that cannot be controlled outside of a laboratory, such as humidity levels, may alter the results.

    1 liter of water (about 2 pints)

50 milliliters of Dawn Professional Detergent, available online (a little over 3 tablespoons)

2-3 grams of guar powder, sold in many grocery stores (about ½ heaping teaspoon)

50 milliliters of rubbing alcohol (a little over 3 tablespoons)

2 grams of baking powder (about ½ teaspoon)

Mix the guar powder with the alcohol and stir until there are no clumps. Combine the alcohol/guar slurry with the water and mix gently for 10 minutes. Let it sit for a bit so the guar hydrates. Then mix again. Add the baking powder and stir. Add the detergent, and stir gently to avoid foaming.

Dip a giant bubble wand with a fibrous string into the mixture until it is fully immersed. Slowly remove the string and wave the wand gently or blow on the soap film. Enjoy the physics of giant soap bubbles!


Pogledajte video: Погружение в физику


Komentari:

  1. Milkis

    It seems to me an excellent phrase

  2. Ethelred

    Bez obzira kakva je priroda posla

  3. Dalyn

    Zanimljivo je. Reci mi gdje mogu pročitati o ovome?

  4. Remy

    Bravo fantazija))))

  5. Rogan

    Izvinite, molim vas, prekidam vas.

  6. Blaisdell

    I već sam izbrisao !!!!!

  7. Mashicage

    I apologise, that I can help nothing. I hope, to you here will help. Ne očajvati.



Napišite poruku